

Имитация *in vitro* пищеварения эмульсий оливкового масла с D3, стабилизированных АцНКЦ

Эмульсии разрушались в условиях тонкого кишечника с высвобождением всего витамина D3.

Таким образом, эмульсии оливкового масла, стабилизированные АцНКЦ, являются перспективными для доставки витаминов и лекарственных веществ в сфере пищевых и биомедицинских технологий.

Контакты

РИЦКоми НЦУрОРАН

167982, Республика Коми, г. Сыктывкар, ул. Коммунистическая, 24;

Тел.: 8 (8212) 24–53–78 Факс: 8 (8212) 24–22–64 E-mail: info@frc.komisc.ru Web-сайт: www.komisc.ru

Институт химии ФИЦ Коми НЦ УрО РАН 167982, Республика Коми, г. Сыктывкар,

ул. Первомайская, 48; Факс 8 (8 212) 21–84–77 8 (8 212) 21–90–16 / доб. 18 E-mail: info@chemi.komisc.ru

Авторы

МИХАЙЛОВ Василий Игоревич к.х.н., с.н.с.

BACEHEBA Ирина Николаевна м.н.с.

ТОРЛОПОВ Михаил Анатольевич к.х.н., с.н.с.

СИТНИКОВ Петр Александрович к.х.н., в.н.с.

ЛЕГКИЙ Филипп Васильевич лаб.

ПАДЕРИН Никита Михайлович м.н.с.

МАРТАКОВ Илья Сергеевич к.х.н., н.с.

Федеральное государственное бюджетное учреждение науки

Федеральный исследовательский центр

«Коми научный центр Уральского отделения Российской академии наук»

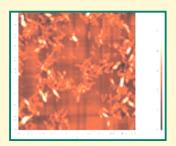
Институт химии

Коми научного центра Уральского отделения Российской академии наук

Институт физиологии

Коми научного центра Уральского отделения Российской академии наук

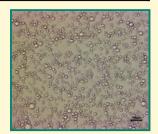
ЭМУЛЬСИЯ ПИКЕРИНГА, СТАБИЛИЗИРОВАННАЯ АЦЕТИЛИРОВАННЫМИ НАНОКРИСТАЛЛАМИ ЦЕЛЛЮЛОЗЫ, КАК НОВАЯ ФОРМА ТРАНСПОРТА ЖИРОРАСТВОРИМЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ


Патент РФ
№ 2682625 опубликован 19.03.2019
№ 2767247 опубликован 17.03.2022

Изобретение относится к эмульсиям, стабилизированным твердыми наночастицами (эмульсии Пикеринга) для создания новых форм перорального транспорта жирорастворимых витаминов и лекарственных средств.

В качестве частиц для стабилизации капель масел впервые использованы частично ацетилированные нанокристаллы целлюлозы (АцНКЦ).

Микрофотография ПЭМ частиц АцНКЦ


Микрофотография АСМ частиц АцНКЦ

Стержневидная форма частиц АцНКЦ

- · Длина частиц: 135÷205 нм;
- · Толщина частиц: 6÷10 нм;
- ζ -потенциал: -38 ± 2 мB;
- Индекс кристалличности: 0.88;
- · Содержание ацетатных групп: 13.5 на 100 целлюлозных звеньев.

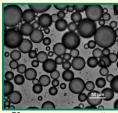
Капли свежих эмульсий, стабилизированных АцНКЦ

Капли эмульсий, стабилизированных АцНКЦ, выдержанными не менее года

В работах* в качестве эмульгатора используется НКЦ, полученная гидролизом с использованием серной кислоты. Однако поверхность таких нанокристаллов покрыта большим количеством сульфатных групп, что ведет к появлению в водной среде высокого отрицательного поверхностного заряда.

*https://doi.org/10.1016/j.foodhyd.2019.04.039; *DOI: 10.1021/acs.langmuir.8b01288

*DOI: 10.1021/acs.langmuir.8b02437



Микрофотография АСМ частиц НКЦs

Стержневидная форма частиц НКЦs

- · Длина частиц:150÷200 нм;
- · Толщина частиц: 5÷20 нм;
- \cdot ζ -потенциал: -55 \pm 2мВ.

Электростатическое отталкивание таких наночастиц препятствует формированию плотного стабилизирующего слоя на поверхности масло/вода.

Капли эмульсий, стабилизированных НКЦs

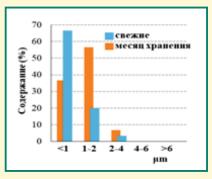

Фото эмульсий, стабилизированных НКЦs

Фото свежих и выдержанных не менее года эмульсий оливкового масла, стабилизированных АцНКЦ

Способ получения эмульсий Пикеринга, стабилизированных АцНКЦ

Распределение капель эмульсий по размерам

Эмульсии оливкового масла, стабилизированные АцНКЦ, **не токсичны** (относятся к **5 классу опасности**)